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C R A C K  P R O B L E M  F O R  A S H A L L O W  SHELL 

W I T H  A F L E X I B L E  C O A T I N G  

I. P. Shatskii  UDC 539.3 

In this paper, we study the effect of a flexible coating on the stress-strain state and limit equilibrium 
of a cracked thin shell. An analogous problem for a plate in tension with an isolated cut has been studied in 
[1] and that for plates with a system of cracks has been treated in [2, 3]. 

1. We consider an isotropic Kirchhoff-Love shell weakened by a rectilinear plane through crack oriented 
along the curvature line of the middle surface. Let one of the shell faces be covered by a flexible coating, which 
deforms jointly with the substrate and and can withstand considerable stresses. The sides of the crack are 
opened by self-equilibrated membrane forces; the rest of the boundary is free of external load. Let us formulate 
the problem of the influence of the coating on the equilibrium of a cracked shell. 

We use the Cartesian system of coordinates O x y z  (Fig. la). The stress-strain state of the shell outside 
of the crack is described by the equations of shallow shell theory [4] 

B 1 
A A q o -  - ~ A k w  = O, A A w + - ~ A k q o  = O, ( x , y )  E R2\L. (1.1) 

Here, ~o is the stress function; w is the deflection of the shell; A = 02/Ox2+O2/~y  2, A k = f1202/Ox2+13102/Oy2; 

131 = R / R I ;  132 = R /R2;  R = min(IRll, IR2[); R1, and R2 are the principal curvature radii of the normal 
sections of the middle surface; B = 2Eh; D = 2Eh3/(3(1  - v2)); E and v are the Young's modulus and 
Poisson's ratio of the material of the shell; h is the half-thickness of the shell; and L is a segment of the z 
axis along which a cut of length 21 is situated. 

Membrane forces and bending moments are assumed to vanish at infinity 

N:: = Y~y = g y  = o, M~ = M~y = M~ = O, ( x , y )  ~ (x~. (1.2) 

We consider the crack in the shell with the flexible coating as a cut whose sides are connected by means 
of hinges at one of the faces z = sh (s = +1 or s = -1 )  (Fig. lb). Following [1], we write the boundary 
conditions of the symmetrical problem in the form 

[ v ] - s h [ 0 y ] = 0 ,  z e L ;  (1.3) 

g y = - p + T ,  M y = s h T ,  x e L ,  (1.4) 

where [v] is the cut opening in the middle surface of the shell, [0~] is the jump of the rotation angle of the 
normal (tgy = Ow/Oy),  - p  is the specified uniformly distributed load, and T is the reaction at the hinge. 

Eliminating the unknown contact reaction from relation (1.4), we arrive at the static contact condition 

My = s h ( N  u + p), x E L. (1.5) 

l~elations (1.1)-(1.3) and (1.5) are the boundary-value problem describing the elastic equilibrium of a shallow 
shell weakened by a cut with hinge-connected edges under the action of a symmetric load. 
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Fig. 1 

2. Let us construct the integral equation of the formulated problem. We write the integral representation 
of the forces and moments at the line y = 0 in terms of derivatives of the jump functions 

B 
Nu(x, 0 ) = ~ f {KH(~ - x)[vl'(~ ) - Kla(~ - x)a[O,r(()} d~, 

L (2.1/ 
B a  

M~(~, 0) = ~ f { g ~ ( ~  - ~)[~1'(~) - g ~ ( ~  - =)o{~,l'(~)} e~. 
/; 

The kernels of these representations can be expressed in terms of the Fourier integrals [5, 6]: 

K j k ( z )  ---- [6ikRe + (1 - 5 j k ) I m ] / g j k ( ~ ' v ~ / s )  sin zsds,  j ,  k = l, 3. (2.2) 
0 

Here, 

gll(p)  = ~(p)/~(p); g13(p) = g31(p) = -~(p)[1 + ~/~(p)]; 

g33(p) = ~(p)[z - 2~ + Zip2 + ~(p) _ ~2/~(p)]; ~(p) = 2[2 + Zip2 + 2~(p)1-~/2; 

6it: is the Kronecker delta. 
Substituting expressions (2.1) into the boundary condition (1.5) and eliminating the jump of the 

rotation angle by means of equality (1.3), we obtain a singular integral equation for the jump of displacements 

B f {Kl l (~  - x) 2s K13(~ - x) + 
47r L ~ / 3 ( l - u 2 )  

whose solution has to satisfy the additional condition 

_1 
K33(~ - x ) }  {,]'(~)d~ = - p ,  x e L, 

3(1 ~2) J 
(2.3) 

[v](OL) = O. (2.4) 

If we introduce nondimensional coordinates t = x / l  and T = ~/l ,  the problem (2.3) and (2.4) takes the 
form 

1 

B4~ f K(~- - t)[vl'(~)d~- = -p ,  t E ( - 1 ,  1), [v](+l)  = 0, 
-1 

K(C) = K H ( ~ ) - 2 s I Q 3 ( ~ ) / ~ 3 ( 1  - v 2 ) + K 3 3 ( ~ ) / ( 3 ( 1 -  u2)), Ifjk(() = IKik(IC), j ,  k = 1, 3, 

(2.5) 

C = r  - t .  

3. Problem (2.5) was solved by the small parameter method in a first shell approximation. It is well 
known [5] that kernels (2.2) can be expanded in terms of the small parameter A = 17 = (I/V"R-h)(3(1 - v2))1/4 
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as follows: 
Oo 

aek0 + I ~ (ajk .  + b~k. In I1r162 
K J k ( ( ) =  ( p=l 

The zero and first coefficients of the expansion are given by the formulas 

all0 = 1, a130 -= a310 = 0, a330 = 3 - -  2Y --  y2  

/31 + 5/32r B _ ~ 3 / 3 ~  -- 22/31/35 + 15/3 2 
all1 = 32 24 ~ ~ -~2~" ~ r/(-/31f12), 

(5 + 2v + v2)/31 + (1 + 2v + 5v2)/32 a. B 
a331 = 32 

~ 3 ( 5  + 2v +//2)/312 - 2(11 + 2v + 11v2)/31/32 + 3(1 + 2v + 5//2)/32 + 
24 (/3a -/32) 2 

a131 = a311 = 

r} (--/31/32), 

3(1 + ~)/3~ + 4(1 + ~ l ~ ) V r ~  + (5 + 37~)/3~ 
4 8 ( ~  - v / ' ~ )  2 

b131 (ln 3 '0(V~ + v /~ )  + 
\ 4 

- 1 ) ]  7/(/31/32) 

+ [  (1 + v)(/31 + 3 / 3 2 ) 1 6  + /323(1 -- 3v)/31 -- (1 -- 7 v ) / 3 2 1 2  ([31 --/32) 2 + b131 ( ~/[~ -/32[ - 1/] r / ( - / 3 1 / 3 2 ) , l n  3'0 _ 

2 2 ~  (1 + V)/31 + (1 + 5//)/~2 B = 1 - - -  a r c t a n  7](-/31/32) b i l l  : b331 = 0, b131 = b311 : 8 ' 71" /31 + /32  

[r/(...) is the Heaviside function, lnT0 = 0.5772... is the Euler constant]. 
For the corresponding coefficients of the representation 

Oo a0 K(r = ~- + I ~ (ap  + b. In I1r162 (3.1) 
p=l  

we obtain the expressions 

ao = a, ,o+a33o/(3(1 - ~,2)), a, = a,,1 - 2sa,31/~/3(1 - ~,2)+a33,/(3(1 - ~,2)), b l = - 2 s b , 3 1 / ~ / 3 ( 1  - ,~2). 

Bearing the expansion (3.1) in mind, we find a solution of the problem in a first shell approximation 

pshl  
[v](t) = O(A,t), [Oy](t) - 3(1 - v2)D o(1 ' t ) "  (3.2) 

Here 

t 2 ) 
(I)(A, t)  - 4 V ~ - - -  1 - a l  + bl + + In + O ( 1 4  In 2 1 )  

a0 ~ 0  ~ 
Substituting (3.2) into formula (2.1), we have with the same degree of accuracy the distribution of the 

contact reaction at the hinge connection 

2 (3+2v)  1 - ~  A I + B 1  + t  2 + l n  +O(A 41n 2A) , 
(3.3) 

We calculate the force and moment intensity coefficient K1 and K3 [5] in the neighborhood of the cut 
ends from the formulas 

3px/7(1 + V)F(1 ) ,  
g l  = - -  Ballov~l  :_ . l v ,  - t2)[v] ' ( t  (/~ _ . . _ _ =  

2(3+  2u) 
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i pshv~(3  + v) F(A) ' K3 = ~Da33o~-l]in~ ~ 1  - t2)[~yy(t) = (3.4) 
2(3 + 2v) 

F ( 1 ) = l - ~ a 0  a l + b l  l + l n  + O ( X  41n 21). 

If I = 0, the formulas (3.2)-(3.4) yield a solution to the  problem for a cut with hinge-connected rims 
in a plate in tension [1]. 

We write the  expressions of the function F ( 1 )  corresponding to the part icular values of the  parameters  
fll and/32 that  are most  impor tant  in practice: 
(a) for a pseudospherical  shell with a cut along the curvature line (/31 = -f12 = -t-1) 

F(X) 1 + 3 - v - 2v 2 64 ~r 48 + ~- In 70 X = - -  - -  + O(14 In 2 1 ) ;  ( 3 . 5 )  

(b) for a cylindrical shell with a cut along the ruler: (/3z = 1 and/32 = 0) 

F(A) = 1 3 - v - 2v 2 64 ~r - - - -  + - - ~  in - -  -}- O ( I  4 In 2 X); 

(c) for a cylindrical shell with a cut along the generator (ill = 0 and/32 -- 1) 

X 2 7 - v - 1 0 v  2 s43( 1 +37v l + 5 v  7 A 
F(X) -- 1 + 3- v - 2v 2 64 ~r + - v2) 96 

(d) for a spherical shell with a meridional cut (/3, =/32 = 1) 

F(A) = i + 3 - v - 2u 2 32 7r -~ -- V2) 3 ~  + ~ In - -  + O(14 In 2 I). 

Let us es t imate  the  limit equilibrium of a shell in tension with a crack using the energy criterion of 
fracture under combined tension and bending [1, 7, 8]: 

G = 27.,  G - 4h2--- ~ 3 +-----~" - -  " 

Here, G is the energy flux to the  crack tip and 7* is the density of the effective surface energy of the material.  
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Substituting relations (3.4) into the criterion, we find the the load leading to the crack propagation: 

3(1 + . )  t + ~ al + bl 1 + In + o (~  4 In 2 ~) (3.7) 

(pO = ~/Sh2ET,/(Trl) is the rupture extending force for a plate containing a crack with rims free of connections). 
4. If we consider the problem of a cut in a shallow shell without a coating, after substituting the 

integral representations (2.1) into the boundary conditions Ny = - p  and My = 0, x E ( - l ,  l) we obtain a 
system of integral equations whose solutions are the functions [5] 

4pIv/~l-t2) [1 a n l  A2 +O(A41n~)]  
M(t )  - B a----no 2an0 ' (4.1) 

a311 + b311 + + in + O(A 4 In z A). 
[Oyl(t) = B ~ I ~ v 2  ) 2a330 

To these jumps correspond the force and moment intensity coefficients 

I f l =  pv~ [1 a lu  12 + O(A41nA)] , 
2ano (4.2) 

I~3 ---- j3-~-~-v2 ) an11 + b311 1 + In + O(~ 4 In 2 )~), 
y - -  

and also the critical load calculated with the same accuracy according to criterion (3.6) 

/~ ,=p0  [1+  an1 A2+O( )01n  2A)].  (4.3) 
2an0 

5. Let us discuss the results obtained. The graphs shown in Figs. 2 and 3 characterize the effect of the 
shell shape on the force and moment  intensity coefficients for v = 0.3. Analogous relations for a nondimensional 
critical load are given in Fig. 4. Curves 0 correspond to the case of a plate in tension A = 0 [1]. Curves 1 
characterize crack orientation in the shell along the line of the maximum curvature (/3t = 1 and 132 = /3) 
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and curves 2 characterize that  along the line of the minimum curvature (ill = fl and f12 = 1) for A = 0.8. 
Here, points A and C correspond to pseudospherical and spherical shells, and points B and D correspond to 
a cylindrical shell with transverse and longitudinal cuts, respectively. Expressions (3.4) and (3.7) taking into 
account the presence of a flexible coating are represented by solid (s = -1 )  and dot-dashed (s = 1) curves. 
For comparison, the results (4.2) and (4.3) 9btaine d in the classical formulation are shown by dashed lines. 

As is seen from the above graphs, hinge connection leads to considerable reduction of the force intensity 
coefficients and to the appearance of considerable moment intensity coefficients. In the classical formulation 
the load-carrying capacity of a shell in tension with a crack is always less than that  of a plate, whereas in 
the presence of a flexible coating the fracture load for a shell can be either greater or lesser than that  for 
a plate. Indeed, the correction for curvature in formula (4.3) depends in a first approximation only on the 
expansion coefficients of the kernel K]I ( ( )  and is negative for arbitrary values of fll and f12. The multiplier 
al + bl (1 + In(A/2)) appearing in expression (3.7), which takes into account the effect of coating, depends on 
the expansion coefficients of all kernels Kjk((), and depending on the shell shape and the parameters s and A, 
can be either positive or negative. 

Figures 5-8 show more detailed depedences of the fracture load on the parameter A, which are obtained 
for v = 0.3 for shells of the simplest geometry: a pseudospherical shell (Fig. 5), a cylindrical shell with 
transverse (Fig. 6) and longitudinal (Fig. 7) cuts, and a spherical shell (Fig. 8). 

Since the crack orientation change for a pseudospherical shell is equivalent in a first approximation to 
the change of sign of the parameter  s [see formula (3.5)], the plots corresponding to the case of/31 -- - 1  and 
f12 = 1 can be obtained by rearrangement of the solid and dashed curves in Fig. 5. 

We note that  a cut with hinge-connected rims in a shell in tension is characterized, in general, by a 
nonmonotonous dependence of the limiting load on the parameter A. 

The effect of a flexible coating on the stress-strain state and limiting equilibrium of a shell for larger 
values of the parameter A as well as the range of applicability of the asymptotic results obtained here can be 
investigated on the basis of a numerical solution of the integral equation (2.5) using the mechanical quadrature 
method [5]. 
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